- Trang chủ
- Sách y học
- Sinh lý y học
- Vận chuyển CO2 trong máu: các dạng vận chuyển và hiệu ứng Hanldane
Vận chuyển CO2 trong máu: các dạng vận chuyển và hiệu ứng Hanldane
Một lượng lớn CO2 đó có vai trò tạo nên sự cân bằng axit-bazơ của các chất dịch cơ thể. Dưới điều kiện bình thường khi nghỉ ngơi, trong mỗi 100 ml máu trung bình có 4ml CO2 được vận chuyển từ mô tới phổi.
Biên tập viên: Trần Tiến Phong
Đánh giá: Trần Trà My, Trần Phương Phương
Vận chuyển CO2 trong máu
Sự vận chuyển CO2 trong máu thường không phức tạp như vận chuyển O2 vì ngay cả trong những điều kiện bất thường nhất, CO2 vẫn luôn được vận chuyển với số lượng lớn hơn nhiều so với O2. Tuy nhiên, một lượng lớn CO2 đó có vai trò tạo nên sự cân bằng axit-bazơ của các chất dịch cơ thể. Dưới điều kiện bình thường khi nghỉ ngơi, trong mỗi 100 ml máu trung bình có 4ml CO2 được vận chuyển từ mô tới phổi.
Các dạng vận chuyển CO2
Để bắt đầu quá trình vận chuyển CO2, CO2 khuếch tán ra khỏi các tế bào ở mô dưới dạng phân tử CO2 hòa tan. Khi đi vào các mao mạch ở mô, ngay lập tức, CO2 đã khởi động một lượng lớn phản ứng hóa học và vật lí, những phản ứng này cần thiết cho sự vận chuyển CO2.
Vận chuyển CO2 dưới dạng hòa tan:
Một phần nhỏ của CO2 được vận chuyển dưới dạng hoà tan đến phổi. Nhớ lại rằng PCO2 máu tĩnh mạch là 45 mm Hg và ở máu động mạch là 40 mm Hg. Lượng CO2 hòa tan trong máu ở phân áp 45 mm Hg là khoảng 2,7 ml/dl (2,7% thể tích). Lượng hòa tan ở phân áp 40 mm Hg là khoảng 2,4 ml, hay sự khác biệt là 0,3 ml. Do đó, chỉ có khoảng 0,3 ml CO2 được vận chuyển dưới dạng hòa tan bởi mỗi 100 ml máu chảy. Nó chiếm khoảng 7 % lượng CO2 được vận chuyển.

Hình. Vận chuyển carbon dioxide trong máu
Vận chuyển CO2 dưới dạng ion Bicarbonate( HCO3-):
Phản ứng của Dioxide Carbon bên trong hồng cầu - Tác động của Carbonic Anhydrase.
CO2 không hòa tan trong máu phản ứng với nước để tạo thành acid carbonic. Phản ứng này có thể xảy ra rất chậm, do đó bên trong hồng cầu có một enzyme đóng vai trò rất quan trọng là carbonic anhydrase xúc tác cho phản ứng giữa CO2 và nước trong hồng cầu làm tăng tốc tốc độ phản ứng lên khoảng 5000 lần. Do đó, thay vì cần thời gian dài để xảy ra phản ứng như ở trong huyết tương, các phản ứng xảy ra rất nhanh trong hồng cầu và đạt trạng thái cân bằng gần như hoàn toàn trong khoảng thời gian rất ngắn. Hiện tượng này cho phép một lượng lớn CO2 phản ứng bên trong hồng cầu, ngay cả trước khi máu đi qua các mao mạch ở mô.
Sự phân ly của acid carbonic thành ion Bicarbonate và ion: Trong giây lát, acid carbonic (H2CO3) được tạo ra trong hồng cầu đã phân ly thành ion -HCO3- - và ion H+. Hầu hết lượng ion H+ sẽ kết hợp với hemoglobin trong hồng cầu vì hemoglobin là một hệ đệm acid- base mạnh. Đổi lại, -HCO3- sẽ khuếch tán từ hồng cầu vào huyết tương, trong khi đó các ion clorua khuếch tán từ huyết tương vào hồng cầu để thế chỗ. Sự khuếch tán này được thực hiện bởi sự có mặt của một loại protein mang bicarbonate-chloride đặc biệt trong màng hồng cầu, mà nhờ đó sự trao đổi qua lại giữa 2 ion này theo hướng ngược nhau được vận chuyển một cách nhanh chóng. Như vậy, sự di chuyển ion chloride ở hồng cầu trong máu tĩnh mạch là lớn hơn ở động mạch, hiện tượng này gọi là sự di chuyển ion chloride.
Dạng thuận nghịch của CO2 ở bên trong hồng cầu dưới tác động của enzyme anhydrase carbonic chiếm khoảng 70 % lượng CO2 vận chuyển từ mô đến phổi. Do đó đây là dạng vận chuyển CO2 quan trọng nhất. Thật vậy, khi ức chế anhydrase được thực hiện trên động vật để ngăn chặn các phản ứng của anhydrase carbonic trong hồng cầu, sự vận chuyển CO2 từ các mô trở nên rất kém đến nỗi mà PCO2 ở mô có thể tăng lên đến 80 mm Hg thay vì mức bình thường là 45 mm Hg.
Sự vận chuyển của CO2 dưới dạng kết hợp với hemoglobin và protein huyết tương – Carbaminohemoglobin. Ngoài phản ứng với nước, CO2 phản ứng trực tiếp với các gốc amin của phân tử hemoglobin để tạo thành các hợp chất carbaminohemoglobin (CO2Hgb). Sự kết hợp của CO2 và hemoglobin là một phản ứng thuận nghịch xảy ra với một sự gắn kết lỏng lẻo, do đó CO2 có thể dễ dàng giải phóng vào phế nang, nơi PCO2 thấp hơn so với các mao mạch phổi.
Một lượng nhỏ CO2 cũng phản ứng theo cách tương tự với protein huyết tương trong các mao mạch ở mô. Phản ứng này thực sự ít ý nghĩa đối với việc vận chuyển CO2 vì số lượng của các protein này trong máu chỉ bằng một phần tư số lượng hemoglobin.
Lượng CO2 có thể được vận chuyển từ các mô ngoại vi đến phổi nhờ carbamino gắn với hemoglobin và protein huyết tương chiếm khoảng 30 % của tổng số lượng CO2 được vận chuyển-thông thường là khoảng 1,5 ml CO2 trong mỗi 100 ml máu. Tuy nhiên, vì phản ứng này là chậm hơn nhiều so với phản ứng của CO2 bên trong hồng cầu nên thực sự nghi ngờ rằng trong điều kiện bình thường cơ chế carbamino này chỉ vận chuyển hơn 20 % tổng số CO2.

Hình. Đường cong phân ly carbon dioxide
Đồ thị phân ly Carbon dioxide
Đồ thị phân ly carbon-dioxide (CO2) -mô tả sự phụ thuộc của tổng lượng CO2 trong máu ở tất cả các dạng vận chuyển của nó vào PCO2. Lưu ý rằng các giới hạn của PCO2 máu bình thường dao động trong một phạm vi hẹp, 40 mm Hg trong máu động mạch và 45 mm Hg trong máu tĩnh mạch. Cũng lưu ý rằng bình thường nồng độ CO2 trong máu dưới tất cả các dạng khác nhau của nó chiếm khoảng 50% thể tích, nhưng chỉ có 4% này được trao đổi trong quá trình vận chuyển bình thường của CO2 từ mô đến phổi. Do đó nồng độ CO2 tăng lên đến khoảng 52 % thể tích khi máu đi qua các mô và giảm xuống còn khoảng 48% thể tích khi nó đi qua phổi.
Khi ô xy gắn với Hemoglobin, Carbon dioxide được giải phóng (hiệu ứng haldane) làm tăng sự vận chuyển CO2
Chúng ta đã chỉ ra rằng sự gia tăng CO2 trong máu gây ra sự giải phóng O2 từ hemoglobin (hiệu ứng Bohr), đó là một yếu tố quan trọng trong việc tăng vận chuyển O2. Điều ngược lại cũng đúng: việc O2 gắn với hemoglobin có xu hướng thế chỗ CO2 trong máu. Thật vậy, hiệu ứng này, gọi là hiệu ứng Haldane, vai trò quan trọng trong việc thúc đẩy vận chuyển CO2 hơn nhiều so với hiệu ứng Bohr trong việc thúc đẩy vận chuyển O2.

Hình. Các phần của đường cong phân ly carbon dioxide
Khi PO2 là 100 mm Hg hoặc 40 mm Hg. Mũi tên thể hiện hiệu ứng Haldane đối với việc vận chuyển carbon dioxide.
Kết quả của hiệu ứng Haldane từ thực tế đơn giản là: sự kết hợp của O2 với hemoglobin trong phổi dẫn đến hemoglobin để trở thành một axit mạnh do đó đã đẩy CO2 ra khỏi máu và vào các phế nang theo hai cách. Đầu tiên, các hemoglobin có tính acid cao hơn nên ít có khuynh hướng kết hợp với CO2 để tạo thành carbaminohemoglobin, do đó đã đẩy CO2 ở dạng carbamin ra khỏi máu. Thứ hai, hemoglobin tăng tính axit cũng gây ra sự dư thừa ion H+ quá mức, và các ion này liên kết với HCO3- các để tạo thành axit cacbonic, sau đó phân ly thành nước và CO2 và CO2 được giải phóng từ máu vào phế nang, cuối cùng ra ngoài không khí.
Ảnh hưởng đáng kể của hiệu ứng Haldane lên sự vận chuyển CO2 từ mô đến phổi. Đồ thị này cho thấy 2 phần của đồ thị phân ly CO2: (1) khi PO2 =100 mm Hg trong các mao mạch máu phổi, và (2) khi PO2 = 40 mmHg trong các mao mạch ở mô. Điểm A cho thấy PCO2 = 45 mmHg trong các mô bình thường chiếm 52 % thể tích CO2 trong máu. Ngay sau khi vào phổi, PCO2 giảm xuống còn 40 mm Hg và PO2 tăng lên đến 100 mm Hg. Nếu đường cong CO2 phân ly không thay đổi bởi hiệu ứng Haldane, thể tích CO2 trong máu sẽ giảm xuống còn 50 % thể tích, điều này sẽ làm tổn thất chỉ 2% thể tích của CO2. Tuy nhiên, sự gia tăng PO2 trong phổi làm giảm đường cong phân ly CO2 từ đường cong phía trên cao hơn xuống đường cong phía dưới thấp hơn trong hình, vì vậy thể tích CO2 giảm đến 48 % thể tích (điểm B). Điều này thể hiện có thêm 2 % thể tích co2 mất đi. Như vậy, hiệu ứng Haldane làm tăng khoảng gấp đôi lượng CO2 giải phóng từ máu vào trong phổi và khoảng gấp đôi sự vận chuyển CO2 trong các mô.
Thay đổi tính acid của máu trong quá trình vận chuyển CO2
Axit carbonic được hình thành khi đi CO2 vào máu trong các mô ngoại biên làm giảm pH máu. Tuy nhiên, phản ứng của axit này với các hệ đệm acid-base của máu ngăn nồng độ H+ tăng cao (pH giảm nhiều). Bình thường, máu động mạch có pH khoảng 7, 41, và khi máu nhận CO2 từ các mao mạch ở mô, pH máu giảm xuống đến một giá trị máu tĩnh mạch khoảng 7.37. Nói cách khác, một sự thay đổi pH là 0, 04 đơn vị đã diễn ra. Điều ngược lại xảy ra khi CO2 được giải phóng từ máu vào trong phổi, với độ pH tăng lên đến giá trị máu động mạch 7, 41. Trong lao động nặng hoặc các điều kiện khác cần các hoạt động trao đổi chất cao, hoặc khi tốc độ máu chảy qua mô chậm, việc giảm pH trong máu ở mô (và trong chính mô) có thể có thể nhiều hơn 0,5, khoảng 12 lần bình thường, gây ra nhiễm toan nặng ở mô.
Bài viết cùng chuyên mục
Tiêu cự của thấu kính: nguyên lý quang học nhãn khoa
Các tia sáng đi đến thấu kính hội tụ không phải là một chùm tia song song mà là phân kì bởi vì nguồn phát các tia sáng không đặt xa thấu kính đó.
Hormon điều hòa chuyển hóa Protein trong cơ thể
Hormon tăng trưởng làm tăng tổng hợp protein tế bào, Insulin là cần thiết để tổng hợp protein, Glucocorticoids tăng thoái hóa hầu hết protein mô, Testosterone tăng lắng động protein mô.
Sinh lý sự trao đổi chất giữa các dịch cơ thể
Các chất từ huyết tương đi qua thành mao mạch bằng phương thức nhập bào vào tế bào nội mô, rồi thì chúng được xuất bào vào dịch kẽ.
Hô hấp trong tập luyện thể thao
Có một mối quan hệ tuyến tính. Cả tiêu thụ oxy và tổng thông khí phổi tăng gấp khoảng 20 lần từ trạng thái nghỉ ngơi và cường độ tập luyện tối đa ở các vận động viên được tập luyện tốt.
Sinh lý hệ thần kinh tự động
Receptor tiếp nhận norepinephrin của hệ giao cảm được gọi là noradrenergic receptor, bên cạnh norepinephrin, các receptor này cũng đáp ứng với epinephrin.
Cấu trúc chức năng sinh lý tim
Thành cơ tim thất trái dày gấp hai đến bốn lần thành thất phải, do nó phải bơm máu với áp lực cao hơn để thắng sức cản lớn của tuần hoàn hệ thống.
Cơ chế sinh lý điều nhiệt cơ thể
Điều hoà thân nhiệt là quá trình cơ thể điều chỉnh, cân đối cường độ sinh nhiệt và thải nhiệt sao cho nhiệt độ trung tâm duy trì gần điểm chuẩn 37oC. Khi nhiệt độ cơ thể tăng cao hơn mức này, tốc độ thải nhiệt cao hơn sinh nhiệt để đưa thân nhiệt trở về 37oC.
Giám lưu lượng máu não: đáp ứng của trung tâm vận mạch thần kinh trung ương
Mức độ co mạch giao cảm gây ra bởi thiếu máu não thường rất lớn ở mạch ngoại vi làm cho tất cả hoặc gần như tất cả các mạch bị nghẽn.
Sinh lý nhóm máu
Trên màng hồng cầu người, người ta đã tìm ra khoảng 30 kháng nguyên thường gặp và hàng trăm kháng nguyên hiếm gặp khác. Hầu hết những kháng nguyên là yếu, chỉ được dùng để nghiên cứu di truyền gen và quan hệ huyết thống.
Vận chuyển các chất qua màng bào tương bằng túi
Trong bào tương các túi nhập bào sẽ hoà lẫn với lysosome, các thành phần trong túi nhập bào sẽ bị thủy phân bởi các enzyme
Đường cong áp suất động mạch chủ
Sau khi van động mạch chủ đóng, áp suất động mạch chủ giảm chậm suốt thì tâm trương do máu chứa trong các động mạch chun co giãn tiếp tục chảy qua các mạch ngoại vi để về tĩnh mạch.
Xung lực của động mạch
Áp lực bơm máu ở góc động mạch chủ đưuọc biểu diễn trên hình. Với một người lớn trẻ khỏe, huyết áp ở đầu mỗi nhịp đập sẽ gọi là huyết áp tâm thu, vào khoảng 120mmHg.
Kích thích và dẫn truyền xung động của tim
Nút xoang (còn gọi là nhĩ xoang hay nút SA) phát nhịp trong hệ thống tạo xung nhịp bình thường, theo đường dẫn xung từ nút xoang tới nút nhĩ thất (AV).
Các giai đoạn bài tiết ở dạ dày
Bài tiết ở dạ dày ở giai đoạn kích thích tâm lý diễn ra thậm chí trước khi thức ăn đi vào dạ dày, đặc biệt khi đang được ăn. Sự bài tiết này là kết quả của quá trình trước khi thức ăn vào miệng như nhìn, ngửi, nghĩ hoặc nếm thức ăn.
Giải phẫu chức năng của vùng vỏ não nhận diện khuôn mặt
Người ta có thể tự hỏi tại sao rất nhiều diện tích vỏ não được dành cho nhiệm vụ đơn giản là nhận diện khuôn mặt. Tuy nhiên, hầu hết các công việc hàng ngày liên quan đến các liên kết với những người khác nhau.
Hệ thần kinh trung ương: so sánh với máy tính
Trong các máy tính đơn giản, các tín hiệu đầu ra được điều khiển trực tiếp bởi các tín hiệu đầu vào, hoạt động theo cách tương tự như phản xạ đơn giản của tủy sống.
Tổng hợp những hormon chuyển hóa của tuyến giáp
Giai đoạn đầu hình thành hormon tuyến giáp là vận chuyện iod từ máu vào các tế bào tuyến giáp và các nang giáp. Màng đáy của tế bào tuyến giáp có khả năng đặc biệt để bơm iod tích cực vào trong tế bào.
Chứng ngừng thở lúc ngủ: kiểm soát hô hấp
Ngừng thở khi ngủ có thể gây ra bởi tắc nghẽn đường hô hấp trên, đặc biệt là hầu hoặc do sự tự phát xung và dẫn truyền của trung tâm thần kinh bị suy giảm.
Sự bài tiết dịch tụy của tuyến tụy
Dịch tụy được bài tiết phần lớn là do đáp ứng với sự có mặt của dịch nhũ chấp tại phần trên của ruột non, và đặc tính của dịch tụy được xác định bởi mức độ có mặt của một số loại thức ăn trong nhũ chấp.
Những chức năng đặc biệt ở trẻ sơ sinh
Đặc trưng quan trọng của trẻ sơ sinh là tính không ổn định của hệ thống kiểm soát hormone và thần kinh khác nhau, một phần là do sự phát triển chưa đầy đủ của các cơ quan và hệ thống kiểm soát chưa được thích nghi.
Vai trò của O2 trong điều hòa hô hấp: điều hòa hô hấp bởi thụ thể ngoại vi
Oxygen không có ảnh hưởng trực tiếp tới trung tâm hô hấp của não trong việc điều hòa hô hấp. Thay vào đó, nó tác động gần như hoàn toàn lên các hóa thụ thể ở ngoại vi nằm trong động mạch cảnh và thân động mạch chủ.
Các yếu tố ruột ức chế bài tiết dịch dạ dày
Dạ dày bài tiết một ít ml dịch vị mỗi giờ trong suốt giai đoạn giữa các lần phân giải thức ăn, khi mà có ít hoặc không có sự tiêu hóa diễn ra ở bất cứ vị trí nào của ruột.
Tiêu hóa thực phẩm khi ăn bằng thủy phân
Tất cả ba loại thức ăn, quá trình thủy phân cơ bản giống nhau. Sự khác biệt chỉ nằm ở những loại enzyme cần thiết để thúc đẩy những phản ứng thủy phân cho từng loại thức ăn.
Phân tích thông tin thị giác: Con đường vị trí nhanh và chuyển động và Con đường mầu sắc và chi tiết
Các tín hiệu được dẫn truyền trong đường vị trí-hình dạng chuyển động chủ yếu đến từ các sợi thần kinh thị giác lớn M từ các tế bào hạch võng mạc type M, dẫn truyền tín hiệu nhanh chóng.
Soi đáy mắt: quan sát nhìn vào phía trong mắt
Kính soi đáy mắt là dụng cụ có cấu tạo phức tạp nhưng nguyên lý của nó rất đơn giản. Cấu tạo của nó được mô tả và có thể được giải thích như sau.
