Đặc điểm phân tử của các sợi cơ co bóp

2020-07-24 04:29 PM

Một đặc tính của đầu myosin mà cần thiết cho sự co cơ là nó có chức năng như một enzyme adenosine triphosphatase (ATPase).

Biên tập viên: Trần Tiến Phong

Đánh giá: Trần Trà My, Trần Phương Phương

Các sợi myosin là bao gồm của các phân tử myosin kép

Mỗi một phân tử myosin, thể hiện trong hình A, có trọng lượng phân tử khoảng 480.000. Hình B cho thấy tổ chức của nhiều phân tử để tạo thành một sợi myosin, cũng như sự tương tác của sợi này trên một mặt với các đầu tận của hai sợi actin.

Phân tử myosi

Hình. A, Phân tử myosin. B, Sự kết hợp của nhiều phân tử myosin tạo thành một sợi myosin. Cũng được thể hiện là hàng ngàn các cầu nối chéo myosin và sự tương tác giữa các đầu của các cầu nối chéo với các sợi actin liền kề.

Phân tử myosin (xem hình A) bao gồm sáu chuỗi polypeptide - hai chuỗi nặng, mỗi chuỗi có trọng lượng phân tử khoảng 200.000, và bốn chuỗi nhẹ với trọng lượng phân tử khoảng 20.000 mỗi chuỗi. Hai chuỗi nặng quấn xoắn quanh nhau để tạo thành một chuỗi xoắn kép, được gọi là đuôi của phân tử myosin. Một đầu của mỗi chuỗi được gấp song phương thành một cấu trúc polypeptide hình cầu gọi là một đầu myosin.

Như vậy, có hai đầu tự do ở một đầu của chuỗi xoắn kép phân tử myosin. Bốn chuỗi nhẹ cũng là một phần của đầu myosin, hai ở mỗi đầu. Các chuỗi nhẹ này giúp kiểm soát chức năng của đầu trong quá trình co cơ.

Sợi myosin được tạo thành từ 200 hoặc nhiều hơn các phân tử myosin riêng lẻ. Phần trung tâm của một trong các sợi này được thể hiện trong hình hình B, sự xuất hiện các đuôi của các phân tử myosin bó lại với nhau để hình thành phần thân của sợi, trong khi nhiều đầu của các phân tử treo bên ngoài đến các bên của thân. Ngoài ra, một phần của thân của mỗi phân tử myosin treo đến bên cạnh cùng với đầu, do đó cấp một nhánh gửi tới đầu ngoài từ thân, như thể hiện trong hình. Các nhánh nhô ra và các đầu cùng nhau được gọi là các cầu nối chéo. Mỗi cầu nối chéo linh hoạt ở hai điểm gọi là khớp nối-một trong những nơi nhánh rời khỏi thân của sợi myosin, và khác nơi mà đầu gắn vào nhánh. Các nhánh có khớp nối cho phép các đầu được hoặc kéo dài xa ra ngoài từ thân của sợi myosin hoặc đưa lại gần tới thân. Các đầu co khớp nối lần lượt tham gia vào quá trình co bóp thực tế, như thảo luận trong các phần sau đây.

Tổng chiều dài của mỗi sợi myosin là không đổi - gần như chính xác 1,6µm. Lưu ý, tuy nhiên, không có cầu nối ngang các đầu ở trung tâm của sợi myosin cho một khoảng cách khoảng 0,2µm vì các nhánh có khớp nối kéo dài đi xa từ trung tâm.

Bây giờ, để hoàn thành bức tranh, sợi myosin xoắn lại do đó mỗi cặp liên tiếp của các cầu nối chéo có trục di dời từ cặp trước đó bằng 120 độ. Việc xoắn này đảm bảo rằng các cầu nối ngang kéo dài ở tất cả các hướng xung quanh sợi.

Adenosine Triphosphatase hoạt động của đầu myosin

Một đặc tính khác của đầu myosin mà cần thiết cho sự co cơ là nó có chức năng như một enzyme adenosine triphosphatase (ATPase). Như giải thích sau, đặc tính này cho phép đầu tách ra ATP và sử dụng năng lượng có nguồn gốc từ liên kết cao năng phosphat của ATP để nạp năng lượng cho quá trình co bóp.

Các sợi Actin bao gồm có actin, tropomyosin, và troponin

Trụ cột của sợi actin là một phân tử protein F-actin sợi kép, được miêu tả bởi hai sợi màu sáng hơn trong hình. Hai sợi được quấn trong một chuỗi xoắn theo cách tương tự như phân tử myosin.

Sợi Actin

Hình. Sợi Actin, bao gồm hai chuỗi xoắn ốc của các phân tử F-actin và hai sợi phân tử tropomyosin phù hợp với các rãnh giữa các sợi Actin. Được gắn vào một đầu của mỗi phân tử tropomyosin là một phức hợp troponin bắt đầu sự co lại.

Mỗi sợi của chuỗi xoắn kép F-actin bao gồm các phân tử G-actin polyme hóa, mỗi cái có một trọng lượng phân tử khoảng 42.000. Kèm theo mỗi một của các phân tử G-actin là một phân tử ADP. Các phân tử ADP này được tin là các điểm hoạt động trên các sợi actin mà cùng các cầu nối chéo của các sợi myosin tương tác để gây co cơ. Các điểm hoạt động trên hai sợi F-actin của chuỗi xoắn kép xen kẽ nhau, cho một điểm hoạt động trên toàn bộ sợi actin là khoảng 2,7nm mỗi điểm.

Mỗi sợi actin dài khoảng 1µm. Nền của các sợi actin được chèn mạnh vào trong các đĩa Z; các đầu của các sợi nhô ra ở cả hai chiều nằm trong không gian giữa các các phân tử myosin, như thể hiện trong hình.

Các phân tử Tropomyosin

Sợi actin cũng chứa một loại protein khác, tropomyosin. Mỗi phân tử của tropomyosin có trọng lượng phân tử là 70.000 và chiều dài là 40 nm.

Những phân tử này được quấn xoắn xung quanh các mặt của chuỗi xoắn F-actin. Ở trạng thái nghỉ, các phân tử tropomyosin nằm trên đầu của các điểm hoạt động của các sợi actin bởi vậy không thể xảy ra thu hút giữa các sợi actin và myosin để gây ra co bóp.

Troponin và vai trò của nó trong sự co cơ

Gắn không liên tục dọc theo hai bên của các phân tử tropomyosin là những phân tử protein bổ sung được gọi là troponin. Các phân tử protein này thực chất là phức hợp của ba tiểu đơn vị protein liên kết lỏng lẻo, mỗi một trong số đó đóng một vai trò đặc thù trong việc kiểm soát sự co cơ.

Một trong những tiểu đơn vị (troponin I) có ái lực mạnh với actin, tiểu đơn vị khác (troponin T) với tropomyosin, và cái thứ ba (troponin C) với các ion canxi. Phức hợp này được cho là gắn tropomyosin với actin. Ái lực mạnh của troponin với các ion canxi được cho là khởi đầu quá trình co bóp, như được giải thích trong phần tiếp theo.

Sự tương tác của một sợi myosin, hai sợi actin, và các ion canxi để gây ra co bóp.

Sự ức chế của sợi Actin bởi phức hợp Troponin – Tropomyosin

Một actin sợi hoàn toàn không có sự hiện diện của phức hợp troponin-tropomyosin (nhưng có sự hiện diện của các ion magiê và ATP) liên kết ngay lập tức và mạnh với các đầu của các phân tử myosin. Sau đó, nếu phức hợp troponin-tropomyosin được thêm vào các sợi actin, sự liên kết giữa myosin và actin không diễn ra. Do đó, người ta tin rằng các điểm hoạt động trên sợi actin bình thường của cơ giãn là bị ức chế hoặc bị che phủ vị trí bởi phức hợp troponintropomyosin. Do đó, các điểm không thể gắn với các đầu của các sợi myosin để gây ra co bóp. Trước khi co bóp có thể xảy ra, tác dụng ức chế của chính phức hợp troponin-tropomyosin phải bị ức chế.

Sự hoạt hóa của sợi Actin bởi các ion canxi

Trong sự hiện diện của một lượng lớn của các ion canxi, tác dụng ức chế của troponin-tropomyosin trên các sợi actin chính nó lại bị ức chế. Cơ chế của sự ức chế này chưa được biết, nhưng có một giả thiết như sau: Khi các ion canxi kết hợp với troponin C, mỗi phân tử có thể liên kết mạnh với tối đa bốn ion canxi, phức hợp troponin được cho là trải qua một sự thay đổi về hình dạng mà trong một số cách kéo trên phân tử tropomyosin và di chuyển sâu hơn vào các rãnh giữa hai sợi actin. Hoạt động này “bộc lộ” các vị trí hoạt động của actin, do đó cho phép các vị trí hoạt động này thu hút các đầu của cầu nối chéo myosin và khiến sự co bóp được tiến hành. Mặc dù cơ chế này là giả thuyết, nó nhấn mạnh rằng mối quan hệ bình thường giữa phức hợp troponintropomyosin và actin bị thay đổi bởi các ion canxi, sinh ra một điều kiện mới dẫn đến sự co bóp.

Sự tương tác của sợi Actin “hoạt hóa” và các cầu nối chéo Myosin - Lý thuyết “đi bộ dọc” của sự co bóp

Ngay sau khi sợi actin được hoạt hóa bởi các ion canxi, đầu của các cầu nối chéo từ các sợi myosin trở nên thu hút với các vị trí hoạt động của sợi actin, và điều này, theo cách nào đó, khiến sự co bóp xảy ra. Mặc dù cách thức chính xác mà sự tương tác giữa các cầu nối chéo và actin gây ra sự co bóp vẫn còn phần nào là lý thuyết, một giả thuyết mà có bằng chứng đáng kể tồn tại là lý thuyết “đi bộ dọc” (hoặc “chốt cài”) của sự co bóp.

Cơ chế “đi bộ dọc” cho sự co bóp của cơ

Hình. Cơ chế “đi bộ dọc” cho sự co bóp của cơ

Hình chứng tỏ giả thiết cơ chế đi bộ dọc với sự co bóp. Hình cho thấy đầu của hai cầu nối chéo gắn vào và tách ra khỏi các vị trí hoạt động của một sợi actin.

Khi một đầu gắn vào một vị trí hoạt động, sự liên kết này đồng thời gây ra những thay đổi sâu sắc trong năng lượng nội phân tử giữa đầu và nhánh cầu chéo của nó.

Sự điều chỉnh mới của năng lượng làm cho đầu nghiêng về phía nhánh và kéo theo sợi actin cùng với nó. Sự nghiêng này của đầu được gọi là sinh công (power stroke). Ngay sau khi nghiêng, đầu sau đó tự động tách ra khỏi vị trí hoạt động. Tiếp theo, đầu trở lại hướng kéo dài của nó. Ở vị trí này, nó kết hợp với một vị trí hoạt động mới xa hơn xuống dọc theo sợi actin; đầu sau đó nghiêng một lần nữa để gây ra một sinh công mới, và sợi actin di chuyển thêm một bước. Do đó, đầu của các cầu chéo uốn cong trở lại và về phía trước và từng bước đi bộ dọc sợi actin, kéo hai đầu của hai sợi actin liên tiếp về phía trung tâm của sợi myosin.

Mỗi một của các cầu nối chéo được cho là hoạt động độc lập với tất cả các cầu nối khác, từng sự gắn và kéo trong một chu kỳ lặp đi lặp lại liên tục. Vì vậy, số cầu nối chéo tiếp xúc với sợi actin tại bất kỳ thời điểm nhất định nào càng lớn, lực của co bóp càng lớn.

ATP như nguồn năng lượng cho sự co bóp - Các sự kiện hóa học trong chuyển động của các đầu Myosin

Khi một cơ co, làm việc được thực hiện và năng lượng là cần thiết. Một lượng lớn ATP được tách ra để tạo thành ADP trong suốt quá trình co bóp, và khối lượng công việc được thực hiện bởi cơ càng nhiều, lượng ATP được tách ra càng nhiều; hiện tượng này được gọi là hiệu ứng Fenn. Các sự kiện nối tiếp dưới đây được cho là phương pháp để mà hiệu ứng này xảy ra:

1. Trước khi sự co bóp bắt đầu, đầu của các cầu chéo gắn với ATP. ATPase hoạt động của đầu myosin ngay lập tức sẽ tách ATP nhưng để lại sản phẩm tách, ADP cộng ion phosphate, liên kết với đầu.

Trong trạng thái này, hình dáng của đầu bởi vậy mà nó mở rộng đường vuông góc về phía sợi actin nhưng vẫn chưa gắn vào actin.

2. Khi phức hợp troponin-tropomyosin liên kết với các ion canxi, các vị trí hoạt động trên sợi actin được bộc lộ và các đầu myosin sau đó liên kết với các vị trí này, như thể hiện trong hình.

3. Sự liên kết giữa đầu của các cầu nối chéo và vị trí hoạt động của sợi actin gây ra một sự thay đổi về hình dạng tại đầu, khiến đầu nghiêng về phía nhánh của cầu nối chéo và thực hiện sinh công cho sự kéo sợi actin. Năng lượng mà kích hoạt sinh công là năng lượng đã được dự trữ, giống như một lò xo “vểnh lên”, bởi sự thay đổi về hình dạng mà đã xảy ra trong đầu khi phân tử ATP được tách ra trước đó.

4. Một khi đầu của cầu nối chéo nghiêng, sự giải phóng của ADP và ion phosphate mà trước đó gắn vào đầu được cho phép. Tại vị trí của giải phóng của ADP, một phân tử mới của ATP liên kết. Liên kết này của ATP mới gây ra tách rời của đầu khỏi actin.

5. Sau khi đầu đã tách ra khỏi actin, phân tử mới của ATP được tách ra để bắt đầu cho chu kỳ tiếp theo, dẫn tới một sinh công mới. Đó là, năng lượng “vểnh lên” lần nữa để đầu trở về trạng thái vuông góc của nó, sẵn sàng để bắt đầu chu kỳ sinh công mới.

6. Khi đầu vểnh lên (với năng lượng dự trữ của nó bắt nguồn từ ATP tách ra) liên kết với một vị trí hoạt động mới trên sợi actin, nó trở nên không vểnh lên và một lần nữa thực hiện một sinh công mới.

Như vậy, quá trình được tiến hành hết lần này đến lần khác cho đến khi các sợi actin kéo màng Z gần sát với các đầu của các sợi myosin hoặc cho đến khi mức tải trên cơ trở nên quá lớn để có thêm sự kéo xảy ra.

Bài viết cùng chuyên mục

Các con đường thần kinh từ vỏ não vận động

Tất cả nhân nền, thân não và tiểu não đều nhận các tín hiệu vận động mạnh mẽ từ hệ thống vỏ-tủy mỗi khi một tín hiệu được truyền xuống tủy sống để gây ra một cử động.

Đái tháo đường type 1: thiếu hụt sản xuất insulin

Tổn thương tế bào beta đảo tụy hoặc các bệnh làm suy yếu sản xuất insulin có thể dẫn đến bệnh tiểu đường type 1. Nhiễm virus hoặc các rối loạn tự miễn có thể tham gia vào việc phá hủy tế bào beta.

Điện thế hoạt động của tế bào thần kinh

Để tạo ra những tín hiệu thần kinh, điện thế hoạt động di chuyển dọc theo tế bào sợi thần kinh cho tới điểm kếtthúc của nó.

Hô hấp trong tập luyện thể thao

Có một mối quan hệ tuyến tính. Cả tiêu thụ oxy và tổng thông khí phổi tăng gấp khoảng 20 lần từ trạng thái nghỉ ngơi và cường độ tập luyện tối đa ở các vận động viên được tập luyện tốt.

Sinh lý quá trình sinh nhiệt thải nhiệt cơ thể

Hầu hết lượng nhiệt sinh ra trong cơ thể được tạo thành từ các cơ quan ở sâu như gan, não, tim và cơ (khi có vận cơ). Rồi thì nhiệt được vận chuyển đến da là nơi có thể thải nhiệt vào môi trường xung quanh.

Cấu trúc chức năng sinh lý tim

Thành cơ tim thất trái dày gấp hai đến bốn lần thành thất phải, do nó phải bơm máu với áp lực cao hơn để thắng sức cản lớn của tuần hoàn hệ thống.

Sinh lý hoạt động trí nhớ

Trí nhớ là khả năng lưu giữ thông tin về môi trường ngoài tác dụng lên cơ thể. Nơi lưu giữ thông tin, chủ yếu là những cấu trúc của não, có tác giả cho rằng ở cả phần dưới cuả hệ thần kinh.

Điều chỉnh huyết áp: vai trò của hệ thống thận - thể dịch

Hệ thống dịch thận - thể dịch trong kiểm soát huyết áp là một cơ chế căn bản cho kiểm soát huyết áp lâu dài. Tuy nhiên, qua các giai đoạn của quá trình tiến hóa, đã có nhiều biến đổi để làm cho hệ thống này chính xác hơn trong thực hiện vai trò của nó.

Điều chỉnh nhanh huyết áp: vai trò của hệ thống thần kinh

Tính chất đặc biệt quan trọng của thần kinh điều chỉnh huyết áp là sự đáp ứng nhanh, bắt đầu ở giây đầu tiên và thường tăng huyết áp gấp 2 lần bình thường trong 5 đến 10 giây.

Mắt như cái máy ảnh: cơ chế quang học của mắt

Cùng với cách mà thấu kính máy ảnh làm hội tụ hình ảnh trên tấm phim, hệ thấu kính của mắt cũng làm hội tụ ảnh trên võng mạc. Hình ảnh này sẽ bị đảo ngược và đổi bên so với vật thực.

Tầm quan trọng của trung tâm thưởng phạt của hệ limbic đối với hành vi

Trải nghiệm của con vật qua trải nghiệm cảm giác gây ra trạng thái thưởng hay phạt sẽ được ghi nhớ lại. Điện não đồ cho thấy yếu tố trải nghiệm cảm giác luôn luôn kích thích nhiều vùng trên vỏ não.

Xác định hướng đến của âm thanh: cơ chế thính giác trung ương

Sự định hướng không gian của các tín hiệu sau đó sẽ được truyền tới vỏ não thính giác, nơi mà hướng của âm thanh được xác định bởi vị trí các tế bào thần kinh bị kích thích tối đa.

Nhiệt cơ thể trong tập luyện thể thao

Mức tiêu thụ oxy bởi cơ thể có thể tăng lên đến 20 lần trong vận động viên tập luyện tốt và lượng nhiệt giải phóng trong cơ thể là gần như tỷ lệ thuận với mức tiêu thụ oxy, một lượng lớn nhiệt được đưa vào nội bộ mô của cơ thể.

Chức năng của vùng hải mã: vùng kéo dài của vỏ não

Hải mã và các cấu trúc nằm cạnh thùy thái dương và thùy đỉnh, được gọi là khối hải mã liên kết chủ yếu gián tiếp với nhiều phần của vỏ não cũng như các cấu trúc cơ bản của hệ limbic – thể hạnh nhân, vùng dưới đồi, vách trong suốt và thể vú.

Các vùng các lớp và chức năng của vỏ não: cảm giác thân thể

Vùng cảm giác thân thể I nhạy cảm hơn và quan trọng hơn nhiều so với vùng cảm giác bản thể II đến mức trong thực tế, khái niệm “vỏ não cảm giác thân thể” hầu như luôn luôn có ý chỉ vùng I.

Chức năng trí tuệ cao của vùng não liên hợp trước trán

Chức năng trí tuệ bị giới hạn, tuy nhiên vùng trước trán vẫn có những chức năng trí tuệ quan trọng. Chức năng được lý giải tốt nhất khi mô tả điều sẽ xảy ra khi bệnh nhân tổn thương vùng trước trán.

Đại cương thân nhiệt cơ thể người

Tất cả các phản ứng tế bào, sinh hoá và enzyme đều phụ thuộc nhiệt độ. Vì thế, sự điều hoà thân nhiệt tối ưu là cần thiết cho các hoạt động sinh lý ở động vật hằng nhiệt.

Điều hòa bài tiết hormone chống bài niệu (ADH)

Khi dịch ngoại bào trở nên quá ưu trương, do áp suất thẩm thấu nên dịch sẽ đi ra ngoài các tế bào receptor thẩm thấu, làm giảm kích thước tế bào và phát ra các tín hiệu lên vùng dưới đồi để tăng bài tiết ADH.

Sinh lý phản xạ có điều kiện và không điều kiện

Bằng những công trình nghiên cứu trên hệ thần kinh trong nhiều năm, Pavlov đã phân biệt hai loại phản xạ: phản xạ không điều kiện và phản xạ có điều kiện.

Synap thần kinh trung ương: synap hóa và synap điện

Sự dẫn truyền tín hiệu tại ở loại synap hóa học chỉ theo 1 chiều, từ sợi thần kinh tiết ra chất dẫn truyền (được gọi là sợi trước synap) đến sợi sau nó (được gọi là sợi sau synap).

Thể dịch điều hòa huyết áp: tầm quan trọng của muối (NaCl)

Việc kiểm soát lâu dài huyết áp động mạch được gắn bó chặt chẽ với trạng thái cân bằng thể tích dịch cơ thể, được xác định bởi sự cân bằng giữa lượng chất dịch vào và ra.

Hàng rào chắn lipid của màng tế bào và các protein mang trên màng tế bào

Các phân tử protein trong màng tế bào các toàn bộ các tính chất của một chất vận chuyển. Cấu trúc phân tử của chúng làm gián đoạn tính liên tục của màng bào tương, tạo sự thay đổi cấu trúc vượt qua màng tế bào.

Dinh dưỡng của trẻ sơ sinh

Vấn đề đặc biệt là thường xuyên phải cung cấp đủ dịch cho đứa bé bởi vì tỉ lệ dịch của trẻ sơ sinh là gấp bảy lần so với người lớn, và cung cấp sữa mẹ cần phải có một vài ngày để sản xuất.

Sinh lý sự trao đổi chất giữa các dịch cơ thể

Các chất từ huyết tương đi qua thành mao mạch bằng phương thức nhập bào vào tế bào nội mô, rồi thì chúng được xuất bào vào dịch kẽ.

Nguồn gốc của điện thế màng tế bào nghỉ

Sự khuếch tán đơn thuần kali và natri sẽ tạo ra điện thế màng khoảng -86mV, nó được tạo thành hầu hết bởi sự khuếch tán kali.